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fraction ao of powder particles, linear absorption 
coefficient/~, mean chord length lo fpowder  particles 
and scattering angle 0. There are no dramatic effects 
of microabsorption if the packing fraction of powder 
particles and the scattering angle are not too small. 

The theoretical results agree well with the experi- 
mental data after Suortti (1972) especially with 
respect to the dependence of the microabsorption on 
the scattering angle. For practical use, the approxi- 
mate formulae (11), (12) should be sufficient in most 
cases. 

The present method is applicable not only to pow- 
ders but also to other heterogeneous specimens such 
as sinter materials. In forthcoming papers, the follow- 
ing related problems will be analysed: (i) micro- 
absorption in quantitative phase analysis; (ii) 
influence of regularity of packing of powder particles 
on microabsorption. 

The stimulating interest of Drs J. Henke, D. 
Stephan and N. Mattern is gratefully acknowledged. 
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Abstract 

A systematic classification of complex topological 
types for polypeptide-chain folding in the antiparallel 
/3 form is proposed. Three well known simple topo- 
logical types, I~, m, g, were chosen as the basic ones: 
single /3 strand, hairpin of two strands and simple 
Greek key type of four strands. The new topologi- 

cal ly  allowed motifs are formed of a combination of 
the three basic motifs. All spatial motif types possible 
with this basis were considered for more complicated 
double Greek key motifs. This was done on the basis 
of a complete set of 14 basic spatial motifs of simple 
Greek key topology. Analysis of about 20 globular 
proteins shows that some spatial motifs appear to be 
realized as the main part of the chain fold of the 
molecule. This suggests that chain folds of antiparallel 
/3 proteins are necessarily conditioned by simple 
topological requirements. 

1. Introduction 

Polypeptide-chain folding in a globular protein 
molecule is evidently governed by general regu- 
larities. In particular, it depends on topological 
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requirements for the main-chain fold and the packing 
symmetry of the repeated motifs (Ptitsyn & Finkel- 
stein, 1980; McLachlan, 1980; Richardson, 1981). In 
recent years a number of new three-dimensional pro- 
tein structures have been determined, and for many 
known protein structures the data have been consider- 
ably improved at higher resolution. This promotes a 
more successful study of the principles of protein 
structure. Two general topological motifs of the up- 
and-down and simple 'Greek key' types were shown 
to exist in globular fl proteins (Richardson, 1977). A 
chain fold for such proteins or domains was shown 
to have a highly limited number of topological 
variants (Ptitsyn, Finkelstein & Falk, 1979; Finkel- 
stein, Ptitsyn & Bendsko, 1979). Some of the possible 
spatial patterns for the simple 'Greek key' topology 
were shown to be part of the molecular architecture 
in/3 proteins (Efimov, 1982). Therefore, the next step 
in studying spatial motifs for the antiparallel/3 struc- 
ture in proteins became possible. This consists of the 
deduction and classification of all topologically 
allowed spatial motifs. A preliminary communication 
on this topic has recently been published (Chirgadze, 
1985). The practical significance of this study is a 
complete summary of spatial motifs of the antiparallel 
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406 CLASSIFICATION OF SPATIAL MOTIFS 

/3 form as constructed on the basis of the simple motif 
types. 

2. Outline of deduction and classification 

The spatial organization of a globular protein with a 
regular antiparallel/3 form presents a structure with 
one or two pleated sheets. In many cases the three- 
dimensional arrangement of the two-sheet/3 form is 
rather complex and there are two alternatives for its 
geometrical approximation: one is the cylindrical or 
'barrel' model (Richardson, 1981), and the other is 
the bilayer or 'sandwich' model (Chothia & Janin, 
1981, 1982). Each layer is a pleated/3 sheet with a 
right-handed twist (Chothia, 1973) and both layers 
are in face-to-face contact. The surface of the/3 sheet 
is often bent and can be described as the surface of 
a twisted hyperboloid (Novotny, Bruccoleri & 
Newell, 1984). There will be no topological difference 
between the two described models if we can distin- 
guish the beginning and end of each sheet. In this 
case, both models coincide if they are properly de- 
formed. We suggest that, in the majority of cases we 
have considered in this paper, the bilayer model seems 
to be more suitable because it can easily represent 
disruption of the peptide hydrogen bonding between 
/3 strands at the ends of the sheets in direct accordance 
with the data of X-ray structure analysis at high 
resolution. On the other hand, there is a limited 
number of cases where the two-sheet structure degen- 
erates to the barrel structure with all the/3 strands 
joined to each other by peptide hydrogen bonds. 

The extended /3 strands in the sheet are always 
bound by hydrogen bonds, and the sheets are bound 
together by a hydrophobic interaction. The main ele- 
ment of such a structure is a/3 strand. 

We consider a spatial motif of the antiparallel /3 
structure in an idealized form. First, the polypeptide 
chain is assumed to be a homogeneous cord. Such 
an assumption allows a much easier solution of the 
deduction problem for spatial motifs. Otherwise we 
will face a complicated result which seems to be more 
suitable for an advanced study of the problem. 
Second, we consider all the sheets as planes with 
hydrogen-bonded /3 strands. This condition is very 
useful for the model graphic representation, but for 
comparison of such a model with real structures the 
model should be deformed without changing the 
topological features of the motif. That is why one can 
neglect the exact coincidence of the/3-strand registers 
between the sheets. Nevertheless, the third condition 
for the idealized motif is assumed to be an antiparallel 
arrangement of the nearest /3 strands located in 
different sheets. One can readily see that the last two 
conditions were introduced just for the convenience 
of the model representation. A convenient end-on 
view diagram for 13 proteins has been proposed by 
Levitt & Chothia (1976). We will use a simplified 

version of this diagram which is widely used at present 
(see, for example, Ptitsyn & Finkelstein, 1980). 

We will only consider motifs for one- or two-sheet 
/3 structures. Each spatial motif is assumed to belong 
to a definite structural class which is determined by 
the total number of/3 strands. An appropriate system- 
atic classification of complex spatial motifs can be 
proposed on the basis of some simple basic motifs. 
In globular proteins with the antiparallel/3 structure, 
at least three simple topological motifs are encoun- 
tered very often (Richardson, 1977). These are a single 
/3 strand, a two-strand hairpin and a so-called four- 
strand simple 'Greek key' motif. Thus, the following 
topological types (and corresponding set of spatial 
motifs) are obvious choices as basic ones: 

(1) [3 is a single/3 strand of the polypeptide chain; 
(2) m is a motif of the up-and-down topology. Its 

spatial type consists of two nearest/3 strands of one 
sheet; 

(3) g is a motif of the simple Greek key topology. 
It consists of four/3 strands located in one or two 
sheets. 

A schematic plane representation of these motifs 
is given in Fig. 1. One may recall that the units of the 
m and g motifs often occur in symmetrical antique 
ornaments. The m motif is a plane hairpin where two 
/3 strands are bound by hydrogen bonds. The motif 
of simple Greek key topology has two versions, g+ 
and g-. The g- motif is derived from the g÷ motif by 
travelling along the chain in the opposite direction. 
Correspondingly, in motif g+ the order of the /3 
strands is 1432, and in motif g- it is 4123. 

3. Deduction and systematic classification of topologi- 
cal types for the spatial antiparallel 13 motifs 

As described above, an idealized/3 structure can be 
represented either by a one-sheet, i.e. plane, or a 
two-sheet structure with antiparallel packing of the 
strands. There is no other special geometrical condi- 
tion. However, for simplicity of the model representa- 
tion, we will assume the/3 strands to be short straight 
strings of equal length arranged in sheets along the 
straight line which is perpendicular to the strands 
and passes through their centres. It is very important 
that all the strands belong to only one chain. That is 
why each spatial motif must satisfy a definite topo- 

j3 m g+ g- 

T n 
1 1 2 1 4 3 2  4 1 2 3  

Fig. 1. Two-dimensional schematic representation of the basic 
topological types 13, m and g for the motifs of the antiparallel 
/3 structure. Numbers indicate the arrangement of the strands 
along the chain. 
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logical requirement. We suggest requirements of the 
following types. 

Structural requirements 

(1) The nearest/3 strands are located in the sheet 
in an antiparallel manner. 

(2) The sheets are parallel to each other, so that 
the/3 strands of different sheets are collinear. 

(3) The nearest /3 strands of different sheets are 
located in an antiparallel manner. 

Topological requirements 

(1) A chain pathway is prohibited between the/3 
strands in the sheet. 

(2) A chain pathway is prohibited between sheets. 
(3) Chain crossing and knot forming are pro- 

hibited. 

All the structural requirements are caused by the 
geometry of the idealized/3 structure. The first two 
topological requirements are conditioned by hydro- 
gen bonding of the/3 strands in the sheet and strong 
side-chain interaction in the space between sheets. 
The third topological condition is explained by the 
chemical property of the polypeptide chain. 

In the complex motif an overlapping takes place 
due to the complexity of the basic m and g motifs. 
We have introduced an order of overlapping for the 
basic motifs constituting the complex motif. The order 
of overlapping is equal to the number of common 
overlapped/3 strands. The basic 13 motif always has 
an order of overlapping equal to zero. In the protein 
structure the 13 motif joins neighbouring /3 strands 
either in the sheet (hydrogen bonding)or  between 
the sheets (hydrophobic interaction). The order of 
overlapping of the basic motif is always less than the 
number of extended strands in the motif, i.e. it is 
equal to 0 for the 13 motif, it can be equal to 0 or 1 
for the m motif, and it can be equal to 0, 1, 2 or 3 
for the g motif. Otherwise, a smaller motif is simply 
a part of a bigger one. When required, the order of 
overlapping can be marked by subscripts in the motif 
symbols. Below we will not use this subscript when 
it is equal to unity for any motif or to zero for the 13 
motif. As accepted, we will use superscripts to mark 
the multiplication of the same motifs with the order 
of overlapping equal to unity. 

Let us clarify this scheme for some complex motifs. 
We consider the motifs ram, 13og ÷ and g~-13 composed 
of the overlapping motifs (Fig. 2). The first motif 
consists of three extended strands, and the second 
and third ones of five strands. In the first case the 
order of overlapping is equal to unity, in the others 
to zero. The example of the last two motifs shows 
clearly that 13g+# g+13, i.e. the permutation leads to 
a different motif. 

There are two important general features of  the 
spatial motifs. First, all the two-sheet spatial motifs 
can be divided into two subgroups of enantiomorphous 
motifs. Suppose we place a given motif in the coordi- 
nate system with the origin at any point located out- 
side the space occupied by the motif trajectory. For 
example, the origin can be located at the zero point 
of the first/3 strand. Then the motif trajectory can be 
obtained by moving the end of the position vector 
along the chain. Similarly, a centrosymmetric trajec- 
tory can be obtained relative to the inversion centre 
placed at the origin. It can be shown that this new 
motif is a mirror-image equivalent, i.e. both motifs 
form an enantiomorphous pair. 

Second, all the spatial motifs can be divided also 
into two other subgroups of direct and opposite motifs 
relative to the direction of travel along the chain. This 
phenomenon is taken into account by introducing the 
opposite basic motifs 13-, m- and g-. In fact, we are 
already using such basic motifs since the direct 13 and 
m motifs are identical with their opposite analogues 
in the approximation of polypeptide chains as a 
homogeneous cord. 

The generation of the new topologically permitted 
motifs is created by a combination of the three basic 
motifs 13, m and g. Thus, we can compile some topo- 
logical types (Table 1). To avoid ambiguity in designa- 
tion, it is necessary to define in complex motifs the 
basic motifs of highest possible rank. The class Gk 
of the/3 structure contains all motifs for the structure 
with k/3 strands. The motifs for the structural class 
Gk+l are generated by an addition of the motif 13 
without overlapping, and the motifs m or g with 
overlapping. A symbolic description of the topologi- 
cal type for the complex motif corresponds to the 
location of the basic motifs along the polypeptide 
chain always beginning at the N terminal. 

Let us consider Table 1. For the third structural 
class there are some spatial motifs of three topological 
types m 2, m13 and 13m. In the case of a one-sheet 
structure, all these spatial motifs degenerate into the 
motif m 2. For the fourth structural class, a new basic 
motif of topological type g appears in addition to the 
several motifs composed of m and 13 types. For higher 
structural classes, the number of topological types 
rapidly increases. From the structural class Gk = 5 
onwards, an important new quality appears in the 
form of the overlapped Greek key motifs g,g, where 
n is the order of overlapping. It is interesting to note 

m m ]3 g÷ g* p 

1 2 3  1 2 5 4 3  1 4 3 2 5  

Fig. 2. Examples of complex topological motifs with overlapping 
of the basic motifs. 
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Table 1. General classification of the topological types of the spatial motifs of the antiparallel /3 structure 

nClmal~Sr ] Topological types 

=o_,=o, ,,,  .... =,, 

2 m 
3 m 2 m13 13m 
4 m 3 m213 ~m 2 13ml3 g g 

5 m 4 m3~ 13m 3 13m213 mg gm 13g [~g g13 g13 g3g 
6 m 5 m4~ J3m 4 [3m3~ m2g gm 2 mgm ml3g [3gm mgl3 gl3m g2g mg3g g3g m [3g3g g3gl ~ 
7 m6 mS~ ] 3ms [~m4~ m3g g m3 mg m2 m2~g ~g m2 m2g~ g[ 3m2 gg mg2g g2g m mg3gm [~g2g g2g[ ~ [~g3gfl 
8 m7 m6~ ~ m6 ~mS~ m4g g m4 m2g m m3~g ~g m3 m3g~ g~ m3 gog mgg ggm mg2gm [~gg ggl3 I~g2g ~ 

Notes: The basic motifs are 13, m and g (see text). The upper index designates a multiplication and the lower index an order of overlapping. An order of overlapping is not indicated 
if it is equal to unity. The I~ motif always has zero order of overlapping. 

that each topological type can be described by the 
general formula applied for any structural class. The 
table presented is not exhaustive. It shows only the 
regularities of the new motif generation and advan- 
tages of the general classification. For example, some 
topological types with permutation of 13 and m motifs 
are not presented in the table. This table will be 
infinite when higher structural classes are considered. 
In this case, new families will appear having a new 
general formula. For example, a new family of 
heterooligomers will be generated with the general 
formula 

M=M~M~...M~, 

where Ma, M b , . . . ,  Ma are some spatial motifs; 
i, j , . . . ,  n are the multiplications o f  these motifs. 

In fact, repeated motifs with the homool igomer  
formula M = M~ occur very often in molecules  of  
globular proteins (Richardson, 1981). 

The spatial motifs of  any given topological  type 
can be obtained by a combination of  the basic spatial 
motifs o f  the 13, m a n d  g topologies.  As a rule, the 
spatial motifs are degenerate. There are a few types 
o f  degeneracy which are conditioned by the fol lowing 
factors: 

(1) The new basic motif can be placed in two 
positions, i.e. at either side of  the original spatial 
motif. 

(2) The basic motif g exists in two forms g+ and 
g- ,  and their spatial motifs are highly degenerate. 

(3) The mutual disposition of the sheets cart be 
changed. 

As a result, a number of  spatial motifs can corre- 
spond to one topological  type. 

4. Deduction of  spatial motifs of  the simple Greek key 
topology 

Each of  the basic topological  types 13 and m has only 
one spatial motif  (Fig. 1). The basic topological type 
g is more complicated and gives rise to a number of  
spatial motifs. Let us deduce all these motifs. Their 

schematic perspective views and butt-end projections 
are presented in Fig. 3. 

In the one-sheet structure all four/3 strands can be 
placed in one sheet. In this case only two plane spatial 

motif  cj + mot i f  g-  

® 

4 4 3 2  

N x 
1 4 1 4 
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(•) _ 4 t - ~ 3  2 

4 3 2  

1 1 

~ VL,,~/r.. / 
4 3 2  43'~" '2 

2 

1 4 3  1 4 3  

1 4 3  

2 2 

® 

4 1  2 3  4 1 2  3 

3 2 ~ ~ Y  

4 1 4 1 

(•) 2 ~ t  

3 4 3 4 

(•  1 _ 2  3 

1 2 3 ~'~";,.~f~/~ I 

4 4 

4 

1 2 3 I 2 %  

4 1 2 4 1 2 

3 3 

Fig. 3. A complete set of the basic spatial motifs derived for two 
topological types of the simple "Greek key' topology. The per- 
spective views and butt-end projections are presented. The super- 
script index + or - is related to the direct or opposite type of 
the g motif, the subscript index is related to the mirror-image 
equivalents. 
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Table 2. Basic spatial motifs of topological type g for 
the antiparaUel /3 structure, structural class G4 

fl-strand 
Physical Sheet number in Enantiomorphous type 

No. type number the sheets r type l type 

1 p 1 4 p+,+p- - -  
2 h 2 2 and 2 h h- 
3 w 2 2 and 2 w + w- 
4 t 2 1 and 3 t +, t~- t~', tT 
5 d 2 1 and 3 d, +, d~- d~, dT 

motifs p÷ and p- are allowed in accordance with the 
g÷ and g- topology (see Fig. 3). 

In the two-sheet structure all possible spatial motifs 
can be obtained by different combinations of the/3 
strands, provided the structural and topological 
requirements are satisfied. First, we consider the 
motifs with two/3 strands placed in each sheet. For 
the g÷ motifs (1432) the following pair combinations 
of the antiparallel/3 strands are possible: 14, 12, 43 
and 32. They give two different hairpin motifs h ÷ (14 
and 23) and w ÷ (12 and 34). In a similar manner, the 
spatial motifs h- and w- are deduced for the topologi- 
cal type g-. Second, we consider the motifs with three 
/3 strands placed in one of the sheets. For the g+ motif 
(1432) only the combinations 143 and 432 of the 
antiparallel/3 strands are possible. Now we take into 
account the permutation of the sheets. As a result, 
we take two 'right', t + and d~ +, and two 'left', t [  and 
d~-, mirror-image spatial motifs (see Fig. 3). Similarly, 
for the g- topological type we have four correspond- 
ing spatial motifs. It can be noted that two abcd 
structures (Efimov, 1982) built from the N and C 
terminals of the polypeptide chain coincide with the 
spatial motifs dr  and dr +, both beginning at the N 
terminal of the chain. 

Thus, for each of the topological types g we 
obtained the motifs of five physical spatial types: p, a 
plane structure; h and w, hairpins; t and d, different 
two-sheet structures with three/3 strands in one of 
the sheets. As shown earlier, all the two-sheet spatial 
motifs obtained should be divided into two subgroups 
of the mirror-image motifs. It is easy to see that 
hairpin motifs h ÷ and w ÷ have their mirror-image 
equivalent motifs which exactly coincide with the h- 
and w- spatial motifs. Now, we can present all 
deduced motifs in a general form (Fig. 4). Finally, 
we have 14 spatial motifs of the g type (Table 2). 

Therefore, we have a total of 16 basic spatial motifs 
of the topological types 13, m and g. Any other possible 
spatial motif of the antiparallel /3 structure can be 
obtained from combinations of these. 

hand, the spatial motifs of the topological type g,g 
in the structural classes (35- (38 are much more compli- 
cated. The relationship between the topological, phy- 
sical and spatial types for such motifs is shown in 
Table 3. Allowed spatial motifs are deduced by the 
treatment of all 196 combined pairs of 14 spatial g 
motifs, and we will consider them in detail below. 
The main result in the form of a selection-rule matrix 
for all combination pairs of all physical types p, h, 
w, t and d is presented in Table 4. The value of unity 
in the table denotes the existence of one or several 
spatial motifs with given physical type. It is interesting 
to note that the spatial motifs of the diagonal terms 
are pseudosymmetrical. There is a mirror plane for 
the motifs of structural classes (35 and (37, an inver- 
sion centre for class (36, and a dyad axis for class 
Gs. All allowed non-diagonal spatial motifs are asym- 
metrical. 
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1 1 

4 4 

2• 
2 

3 4  ! 3 4 1  

3 

2 ! 4 2 1  4 

5. Deduction of the spatial motifs of the double Greek 
key g.g topology 

The complex spatial motifs built from different basic 
spatial ones can easily be obtained. On the other 

Fig. 4. General representation of  the basic spatial motifs of  topo- 
logical type g. The structural class of  the antiparallel/3 structure 
is (94. The group of  two-sheet motifs is divided into two sub- 
groups of  enantiomorphous,  L e. mirror-image-equivalent, spatial 
motifs. 
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Table 3. Hierarchy for the motif types of the antiparallel 
fl structure with double Greek key topology 

Topological type 
g,g* 

One type 

Physical types 
Pair combinations from five physical types 

p, h, w, t and d 
Maximum 25 types 

Spatial types 
Pair combinations from fourteen basic spatial motifs 

p+, p-,  h+, h-,  w+, w-, t+, t~-, t~-, t~', d+, d~-, d~', d ~ - 
Maximum 196 types 

* Here n is the order of  overlapping of  the g motifs; it can be equal to 0, 
1, 2 or 3. 

(a) Spatial motifs of the g3g type, structural class G5 

The selection rules for spatial motifs of this type 
are presented in matrix form in Table 5, and perspec- 
tive views of them are given in Fig. 5. First of all, we 
reveal the selection-rule matrix to be asymmetric in 

r -  type [ £ - type 

pseudosymme tr ica / 

' 1 4 3 2 5  1 4 3 2 5  

1 5 1 5 

( t [  t~" ) as ,~ 

5 1 5 1 

asymme t r ice/  
" p(p_~_~ 1 " ~ 2  

5 5 

Or'P-) ~._.3 z 5 

t t 

(h* dr) ~z 3 

t 4 t 4 

(dr*h-) 5 a 

t 4 3  1 4  3 

" - ' / p " t . /  z 3 ,~ I % v/ 

5 5 

tZp-) 5 2 , ,  

t t 

( h - d ; )  3 z 5 
3 2 5 / J ' ~ " ~ " ¢ " / / 1  

4 t  4 1  

(dr h') z 5 

3 4 t  3 4 1  

Fig. 5. Allowed spatial motifs of topological type gag for the 
structural class Gs. 

contrast to the corresponding matrix of the general 
physical types (see Table 4). This is a direct con- 
sequence of the permutations of two basic spatial 
motifs. There are only 11 possible spatial motifs, 
mainly because of the high value of the order of 
overlapping of the basic motifs. Three motifs, p÷p-, 

+ -- 
trtr and t~t[  are pseudosymmetrical with a mirror 
plane perpendicular to the sheet planes and intersect- 
ing the third fl strand. The two-sheet motifs are 
divided into two subgroups of the r and I enantiomor- 
phous types. All two-sheet spatial motifs of the gag 
type are listed in Table 6. Spatial motif pairs p t - t p  
and hd-dh are direct and opposite motif pairs respec- 
tively. 

( b ) Spatial motifs of the g2g type, structural class G6 

There are only ten possible spatial motifs of this 
topological type, and only two-sheet motifs are 
allowed. The selection-rule matrix is presented in 
Table 7, and all the spatial motifs are given in Fig. 
6. There are six pseudosymmetrical motifs with the 
inversion centre located between the sheets. These 
motifs have very compact chain folds. All the motifs 
are listed in Table 8. Spatial motif pairs pw-wp are 
direct and opposite motif pairs respectively. 

(c) Spatial motifs of the gg type, structural class G7 

There are 55 possible spatial motifs of this topologi- 
cal type. The selection-rule matrix is given in Table 

r -  t ype  £ - type 

ps eudosymme trice l 

(h÷h " )  ~ 3 6 
2 3 6  ~ ' "  

1 4 5 1 4 " - " 5  

I / , , f / ' , / f /  
4 5 6 4 v 5 6  

4 1  2 4 1  2 

(h-h +') s 3 2 

m '" 
s 4 t  s"~  t 

( t i  t ~ )  3 2~ I  

6 5 4  6 5 " 4  

(d~" d~) 3 ~..--,5 

2 1 4 2 t 4 

asymrnetrical 

1 4 3 2 

(w-p-) ~ ~..~.~ 

I "1" / . , . . . . 1 /  
V ~  

1 2 1 2 

Cp+w-) 6.-,5 
/ ~ . , f / A  

2 3 4  t 

(,w+p - ) 6 3....--~4 5 

2 1  2 1  

Fig. 6. Allowed spatial motifs of topological type g2g for the 
structural class G6. 
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Table 4. Selection-rule matrices for general physical types of spatial motifs with topological type g,,g 

Type gag Type g2g Type gg Type gog 
Class G5 Class G 6 Class G 7 Class Gs 

First Second motif Second motif Second motif Second motif 
motif p h w t d p h w t d p h w t d p h w t d 

P [ 1 ~ 0  0 1 i l  [ i  0 1 0 i l  [ l i  l 1 1 II]  [ i  1 1 1 II] 0 0 0  , , 0 0  0 0 0  [1: , 1 
w 0 0 0 0 0 0 0 0 0 1 12 1 
t 0 0 lm 0 0 II 0 0 0 1 1 12 
d L 0 1 0 0 0 0 0 l~d 1 1 1 lmJ 1 1 1 12J 

Note: Description of  the general physical types p, h, w, t and d for the g topology is given in the text. Non-zero terms mean allowed motifs. Symbol 
subscripts designate the pseudosymmetry elements: m - mirror plane, i - inversion centre, 2 - dyad axis. 

Table 5. A selection-rule matrix for the spatial motifs 
of topological type gag, structural class G5 

First 
motif 

Table 7. A selection-rule matrix for spatial motifs of 
topological type g2g, structural class (36 

Second motif Second motif 

p+ p- h + h- w + w- t + t~- t [ t  7 d + d 7 d~" d~" p+ p- h + h- w + w- t, + t~- t~" t~" d + d 7 d~" d T 

1 

1 

1 1 

I m 

lm 

I 1 

lm 

First 
motif 

Note: Non-marked terms are not allowed, subscript m designates a mirror plane. 

p+ 
p- 

h + 
h- 

w+ 
W- 

t, + 
t~- 

t7 

d, + 
d7 
d; ~ 
d? 

11 
11 

1 1 

l i  

It 

Note: Non-marked terms are not allowed, subscript i designates an inversion centre. 

Table 6. Allowed spatial motifs of the g3g t~pe, struc- 
tural class G5 

Phys ica l  E n a n t i o m o r p h o u s  type  
No. type  P s e u d o s y m m e t r y  r type  l type  

1 pp m p+p- 
2 tt m t+t7 t~'t7 
3 pt 1 p+t~- p+tT 
4 tp 1 t+p - t~-p- 
5 hd 1 h d7 h-dT 
6 d h  1 d+h - d~h + 

9. There are only three pseudosymmetrical motifs, 
p+p-, d+d~ - and d~d~-, with a mirror plane perpen- 
dicular to the sheet planes and intersecting the fourth 
13 strand (Fig. 7). Some spatial motifs of  the general 
physical pt and tp types are doubly degenerate. This 
type of degeneracy is related to changing the disposi- 
tion of one of the sheets. For example, the second 
version of  the spatial motif  p+t + can be obtained by 
rotating the t + motif  around the fourth/3 strand of 
the p+ motif  by 180 °. All possible spatial motifs of  
the gg type are listed in Table 10. There are direct- 
opposite pairs in motifs ph-hp, pw-wp etc. 

Table 8. Allowed spatial motifs of the g2g type, struc- 
tural class G6 

Phys ica l  E n a n t i o m o r p h o u s  type  
No. t y p e  P s e u d o s y m m e t r y  r type  l type  

1 hh i h+h - h-h + 
2 tl 1 - + tTt~ trt,  
3 dd T d~-d~ dTd~ 
4 pw 1 p+w + p+w- 
5 wp 1 w p w+p - 

( d) Spatial motifs of the gog type, structural class G8 
An essential feature of  these motifs is the zero order 

of  overlapping of the basic motifs. This means that 
both simple g motifs have no common/3  strands. The 
binding contact occurs either through the intrasheet 
hydrogen bonds or through the intersheet hydro- 
phobic interactions. As a result, the limitations on 
motif  formation are removed. This explains the high 
degree of  degeneracy for some motifs and the large 
total number of  all possible spatial motifs. Therefore, 
we have considered only the spatial motifs of  the 
homogeneous  physical types pp, hh, ww, tt and dd. 
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Table 9. A selection-rule matrix for spatial motifs of 
topological type gg, structural class G 7 

S e c o n d  m o t i f  

p+ p -  h + h -  w + w -  tr + t r t~ t;- d + d~- d~" d ;  

p+ 

p -  

h + 

h ~ 

w-t- 

w -  

t, + 
t7  
t~ 
t /  

d; 
dt 
dT 

F i r s t  

m o t i f  

1 1 1 

1 

2 2 

1 
2 2 

1 1 1 

1 1 1 

2 2 

1 2 1 2 1 1 1 

l 

1 

i 

1 

1 

1 1 

1 

1 

1 1.1 
1 

1 1 1,.. 

Note:  N o n - m a r k e d  terms are not  a l l owed ,  subscript  m des ignates  a mirror plane.  

The selection rules for such motifs are presented in 
the block-diagonal matrix of Table 11. 

We should take into account the different location 
and orientation of the second motif at the formation 
of the complex motif  of the gg type. The sheet permu- 
tation must also be performed for the pp motif. 

We will use the following system for designation 
of the disposition of the second motif relative to the 
first one. The main coordinate system is associated 
with the first motif, and its origin is placed at the 
geometrical centre of the first motif, as shown in Fig. 
4. The transformation of vector A~ by the rotation 
and translation is described by the formula A2 = 

A~R+T, where R is the rotation matrix,and T(a, b, c) 
is the translation vector. 

Ps eu do sym m e t r i c  a I 

3 2 1 4 7 6 5 3 2 1 4 7 6 5 

2 1 4 7 6 

3 5 3 5 

6 7 4 t . , . _ 2  

6 7 , 1  2 / 1  / 1  
. . . . _ / 1  / I I 

L , , "  L /  
5 3 5 3 

Fig. 7. Allowed pseudosymmetrical spatial motifs of topological 
type gg for the structural class Gv. The two two-sheet motifs are 
enantiomorphous. 

Table 10. Allowed spatial motifs of the gg type, struc- 
tural class G7 

Physical P s e u d o -  Enantiomorphous type 
No. type symmetry r type l type 

1 pp m p - p +  - - 
2 dd m d~-d + d~-d[ - 
3 ph I p - h  + p - h -  - 
4 hp 1 h - p  + h+p + - 
5 pw 1 p -w  + p - w -  - 
6 wp 1 w - p  + - w+p + - - 
7 pt 1 p+t ,  + p - t ,  + p-t~- p+t~ p-t~" p-t~- 
8 tp 1 t~-p- t~-p + t,+p + tTp-  t~-p + t~'p + 
9 pd I p - d ,  + p-d~" - 

I0 dp 1 d~-p + - d~-p ÷ - 
11 hd 1 h - d  + b+d ~ - 
12 dh I d~-h + d~-h- - 
13 wd 1 w+d,  + - w-d~" - 
14 dw 1 d~-w- - - d [ w  + - - 
15 td 1 t ~ d [  t~'d, + t~'d~- t~'d + t~-d]" t~-d~" 
16 dt 1 d~-t r d~-t, + dr+t, + d~-t~- d/t~" d~t~" 

Note:  S o m e  spatial  mot i fs  o f  the pt a n d  tp types  are doubly  degenerate .  

Table 11. A selection-rule matrix for spatial motifs of 
topological type gog, structural class Gs 

F i r s t  

m o t i f  

w + 

w-  

S e c o n d  m o t i f  

p+ p -  h + h -  w ÷ w-  t ,  + t~- t~" t~- d~ + d~" d~ d~" 

6 2 6 
6 6 2 

4 2 0 

0 4 2 

4 2 0 
0 4 2 

2 2 2 2 2 

2 2 2 2 2 

2 2 2 2 2 

2 2 2 2 2 

12 2 0 2 

2 12 2 0 

0 2 12 2 

2 0 2 12 

Notes:  O n l y  b l o c k - d i a g o n a l  terms were  cons idered ,  zero  terms are not  a l lowed .  There  

are four  p s e u d o s y m m e t r i c a l  moti fs  for all the phys ica l  types pp, hh, ww and dd, but type  

tt has  eight motifs .  Subscript  2 des ignates  a dyad axis.  

In all our cases, the second motif rotates only by 
180 ° around the x, y, z axes, i.e. 

Rx = 0 - 1  , Ry= 1 , 

0 0 - 0 - 

Rz - - 1  . 

0 

We will designate these rotations by a triple index 
which consists of only dia.gonal terms of these rotation 
matrices: 111, 111 and 111. 

Similarly, we will designate the translation vector 
of  the second motif along the x, y and z axes by an 
additional index aO0, ObO and OOc if the vector co- 
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Table 12. AUowed pseudosymmetrical spatial motifs of 
the gog type, structural class G8 

Physical Pseudo-  Enantiomorphous type 
No. type symmetry r type l type 

1 pp 2 (P+P+)~r,oo~ (P+P+)ilLoo~ 
2 pp 2 (P-P-)rxr,oo~ (P-P-)~Loo~ 
3 hh 2 (h+h+)~iL=oo (h-h-)~li,aoo + + 
4 hh 2 (h h )~l~aoo (h -h - )~ l i , ooo  

-t- -#~ , 
5 ww 2 (w w )~x~ aoo (w-w-)~l i ,aoo -.i.. -4- ' 
6 ww 2 (w w ) i l i  aoo (w-w-) i l '~  aO0 + +  , + +  , 
7 tt  2 ( t ,  t ,  )i'l~,aO0 (tl t l  )r~i,=oo 
8 tt  2 + + ( t i  t t  )iti .noo (tr  t ,  )ilLa00 + + 
9 t t  2 (tTtT)rxLooo (t~-tT)zxL=oo 

10 t t  2 (t~-t~-)iti aoo ( t~- t t ) r l r  noo + + . + + . 
11 dd 2 (d ,  d , ) r iLaoo  (dr dt )i t i ,aoo 
12 dd 2 (d~-d ~-) rlLnoo (dTdT)i lLaoo 

ordinates are positive, or by the index ti00, 0/70 and 
00g if they are negative. 

Then, for example, the spatial motif formula 
(P÷P+) r~i.ooe means that the second motif p+ is rotated 
around the y axis relative to the first by 180 ° and is 
displaced in the z direction by the value -c .  

The total number of spatial motifs considered is 
92. Among them are 24 pseudosymmetrical motifs 
with a dyad axis (Table 12). Their three-dimensional 

r- type 
( P÷P+);~T, oocl ~ 5  

1 4 3 2  1 4 3 " - ' 2  

(h*h*)~,ooo J 2 3 8 s 

1 4 7 6  14"~7"~6 

(w÷w~)T~,ood z 7 8 4 2 

I l l _ / _ t .  I 
L . V L . / ~ /  

6 5  4 3 6 5 " ~ 4 3  
4. .t __ 

(tr tr)111.ooo J 4 . . _ , 3 2 5  

, 3  2 5 / ~ / " , ~ / J ~ l  

1 6  7 8  1 6 " 4 7 8  

V / , f / ~  
4 7 6 5 . 4 " " ~ ' ~  

(drt _dr*)t-ti._~oo I / ~ . . 7 ~ . .  5 2 

7 8 5 2  

6 1 4 3  6 1 4 3  

(d;d;hti,~oo 6_5 8 3 
6 5 8 3  I 

7 4  1 2 7 4 1  2 

.e- type 

(P'cP÷)itt,oo~ 5 ~ 8 7 6  
s 8 7 6 . / ~ . , ~ . f , , " / q  

2 3 4 1  

(h-h-)hX,~ooJ I 5 8 3 2  

5 8  3 2  

6 7  4 1  6~?  4 1  

(w-w-)~,5oo j /  2 I 8 7 

3 4  5 6  3 4 " - ! 5 6  

(t~t~)]t~,,oo 5 2 3__4 

8 7 6 1  8 7 " ~ 6 1  

(t; re- )'ILo oo J ~ ~ . 9 . ~ 1  

5 6  7 4  5 ~  
(~*~,)-. 
u lue  tt%5oo 2 5  8 7 

2 5 8 7  

3 4  1 6  5 4 1 6  

(d~d;,)h~,5oo 3 e 5 6 
3 8 5 6  

2 1  4 7 2 1  4 7 

Fig. 8. Some allowed pseudosymmetrical two-sheet spatial motifs 
of topological type gog for the structural class Gs. 

patterns can easily be built with the use of the sub- 
script index information. Some examples of these 
motifs are given in Fig. 8. The dyad axis is located 
between the sheets along the line parallel to the /3 
strands. All these motifs are very compact. They have 
different connectivity of the two sheets. The motifs 
of the dd type display maximal connectivity: their 
sheets are bound by five side-sheet linkers. Such struc- 
tural patterns appear to be much more stable than 
the others. 

6. E l a b o r a t i o n  o f  the  d e d u c e d  s p a t i a l  m o t i f s  in  g l o b u l a r  
p r o t e i n s  

In globular protein molecules, an antiparallel fl struc- 
ture differs somewhat from the idealized model con- 
sidered. First, the real structure is a pleated sheet; 
this feature does not change any result obtained. 
Second, the real structure has twisted /3 sheets. In 
some cases a bilayer structure has unaligned 
orthogonal/3-sheet packing (Chothia & Janin, 1982). 
These features do not violate the topological require- 
ments but before starting to classify the spatial pat- 
terns of some real protein structure one must unbend 
it, so that it approaches as closely as possible the 
idealized model. In some cases, the/3 strands can be 
of different length, but this does not seriously increase 
the discrepancy between the unbent real and idealized 
motifs. In the most complicated cases, it is suggested 
that a convenient computational approach be applied 
in order to derive an adequate idealized model. 
Novotny, Bruccoleri & Newell (1984) give an idea o f  
such an approach. These authors propose a method 
for approximation of the surface of a/3 barrel struc- 
ture by a twisted hyperboloid. This surface can be 
unwrapped, then all sheet regions are detected and 
an idealized model is built. However, in all cases 
which we analysed such a procedure was unnecessary. 

The number of/3 protein structures known at pres- 
ent seems to be insufficient to observe all the revealed 
spatial motifs. We have considered about 20 protein 
structures with an antiparallel/3 form. All these pro- 
teins contain the spatial motifs as the main part of 
their structure. Examples are presented in Table 13. 
All motifs are related to the structural classes with 
five to eight/3 strands. Good examples of the plane 
one-sheet motifs are domain 3 of glutathione reduc- 
tase (Schulz, Schirmer, Sachenheimer & Pai, 1978; 
Thieme, Pai, Schirmer & Schulz, 1981) and the sub- 
tilisin inhibitor from Streptomyces (Mitsui, Sato, 
Watanabe & Itaka, 1979). y-Chymotrypsin has a two- 
domain structure (Cohen, Silverton & Davies, 1981). 
Each domain has a twisted barrel structure which can 
be described as a motif of topological type g2g, struc- 
tural class G6. The spatial motif of this structure is 
t~t~- = h - h  + - + = d, d , .  The degeneracy occurs owing to 
the high degree of deformation of the two-sheet 
spatial motif into the structure of the closed barrel 
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No. 

T a b l e  13. Examples of spatial motifs of the antiparallel ~ structure in globular proteins 

Protein, Schematic diagram Structural Motif type 
reference of chain tracing class Topological Spatial 

p ÷  

Glutathione reductase 
(Thieme et aL, 1981) G5 mg 

1 2 5 4 3  

mp ÷ 

m m , , r ~  P- 

Subtilisin inhibitor, Streptomyces I I [ f l  I G6 g m2 
(Mitsui et al., 1979) * L.Y | U 

6 5 4 1 2 3  

p-m 2 

y-Chymotrypsin, N- and C-terminal domains 
(Cohen et al., 1981) 

5 

G6 g2g tTtT ~ h-h+ = d~-d + 

1o 7 ml( -~-g;  
Concanavalin A, N-terminal domain [~,,.~.~D-~[ 
(Reeke et aL, 1975) ~ ' x ~ , ~ ' ~ [  G6 g2g 

I i 9 8 1 1 4 5 6  
L . . . . .  J 

-- + 

t , t ,  

~b-T:lZ 1 2 3 

Concanavalin A, C-terminal domain 
(geeke et aL, 1975) [ ~ H ~ ! ~  G, g3g 

L_ 9_ 9_ !!: 4 5 6 

h+d~ 

Prealbumin ~ G5 g3g 
(Blake et aL, 1978) 8~ ~"711_4 J "~ 

h+dT 

2 8 : -~¥~ I  
Plastocyanin ~ z  
(Guss & Freeman, 1983) G5 g3g 

1 L_3_.6j 

h+d~ 

8 : ¥ ¥ V  
r ' A 2 g ~  r = x _ t ~ ,  

Superoxide dismutase, Cu, Zn ~",~V-T i 
(Tainer et al., 1982) ~E~"~il  2 L3 6~ G5 g3g h+d~ 

CAP protein, N-terminal domain 
(McKay & Steitz, 1981) 

2 l - f - , / -~ l  
i 
I 

i 

I 8,, _3__6; 

Gs g3g h+d; - 

Virus coat proteins, SBMV, STNV and TBSV 
(S domain) 
(Rossmann et al., 1983) 

Gs g~g h+d7 

Fab fragment of immunoglobulin G New, CL and 
CH1 domains 
(Saul et aL, 1978) 

r - - - 1  

7'6 3 i 4V' , i 

L . . . . . .  I 

G5 g3g d~h- 

Actinoxantin 
(Pletnev et al., 1981) 

t I 

1 L2 _5 4_I 

G5 g3g d+h - 
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Table 13 (cont.) 

No. 
Protein, 

reference 
Schematic diagram 

of chain tracing 
Structural Motif type 

class Topological Spatial 

Virus coat protein, TBSV, P domain 
(Harrison e t  a l . ,  1978) 

2 1 loI_5__8__U 
Gs g 3 g  d +h- 

y-Crystallin, N- and C-terminal domains 
(Wistow e t  a l . ,  1983) 

r . . . . .  7F.,-], 
6 5 8f3~ i i 

L_~'~&_t__2; 

G8 gog d; d; 

type. Other serine proteases have a similar structure. 
In all other cases the /3 structure appears to be 
described by a more or less twisted two-sheet motif. 
This is clearly demonstrated on peptide hydrogen 
bonds: they are not formed, as a rule, at the ends of 
the sheets. 

The concanavalin A molecule (Reeke, Becker & 
Edelman, 1975) consists of two spatial motifs, trtr- ÷ 
and h+d~ - of the structural classes (36 and Gs. In this 
protein we observe at one end of the bilayer a short 
extra hairpin between strands 9 and 10 which cannot 
be included in the bilayer structure. The next five 
examples of Table 13 display the same spatial motif 

+ - -  

h3dr , topological type g3g, structural class Gs. This 
motif is met in prealbumin (Blake, Geison, Swan, 
Rerat & Rerat, 1974; Blake, Geison, Oatley, Rerat & 
Rerat, 1978), plastocyanin (Guss & Freeman, 1983), 
Cu, Zn superoxide dismutase (Tainer, Getzoff, Beem, 
Richardson & Richardson, 1982), N-terminal domain 
of CAP proteins (McKay & Steiz, 1981) and virus 
coat proteins (Rossmann, Abad-Zapatero & Murthy, 
1983). Incrementing the basic spatial patterns h~-fl~- 
by one or two additional/3 strands in different sheets 

S - d o m a i n  P - d o m a i n  

J~ h%dr~ (d~)3 h- p 

, 3  8 5 6 

i 
1 1 2  9 4  7 

t 

r -  . . . . . . . . . . .  I 

2 1  ~ 1 0 5 8 7  ~ 
L ~ 

I 

I 
5 4 1 9  6 I 

L . . . .  ._1 

3 8  5 6  1 0 5 8 7  

- 

2 9 4 7  9 6  

Fig. 9. Superhelical hairpin spatial patterns in S and P domains 
of the tomato bushy stunt virus coat protein, beginning with the 
spatial motifs h~d7 and (d+)3h -. 

gives rise to a complete spatial structure of the domain 
or the whole protein molecule. 

The next three proteins listed in Table 13 (Nos. 11, 
12, 13) give an example of the spatial motif (dr+)3h -, 
topological type g3g, structural class Gs. This pattern 
is a basic part of the whole three-dimensional struc- 
ture in the constant domains of the Fab fragment of 
immunoglobulin G New (Saul, Amzei & Poljak, 1978) 
and actinoxantin (Pletnev, Kuzin, Trakhanov, 
Khokhlov & Ovchinnikov, 1981). In the P domain 
of the tomato bushy stunt virus (TBSV) coat protein 
(Harrison, Olson, Schutt & Winkler, 1978), this 
spatial motif represents about half of the whole struc- 
ture. Growth of the other half of the P domain leads 
to the formation of a specific two-sheet pattern which 
can also be described as a large superhelical right- 
handed hairpin beginning with the motif h- and hav- 
ing one and a half turns. It is interesting to note that 
a very similar structural pattern is l~bserved in the S 
domain of the TBSV coat protein. However, in this 
case it is a superhelical right-handed hairpin begin- 
ning with the motif h ÷ and having two complete turns 
(Fig. 9). Such a structure with one turn is also 
observed in the N-terminal domain of the CAP pro- 
tein. It should be noted that for the first time this 
spatial pattern has been revealed in the structure of 
the satellite tobacco necrosis virus protein (Liljas, 
Unge, Jones, Fridborg, Lfvgren, Skoglund & Strand- 
berg, 1982). 

The last example in Table 13 presents a highly 
pseudosymmetrical spatial motif tl~-d~-, topological 
type g0g, structural class Gs. The structure has 
pseudosymmetrical dyad axes (see Fig. 8). This 
spatial motif is observed very clearly in the N- and 
C-terminal domains of the calf eye lens homologous 
proteins, y-crystallins (Wistow, Turnell, Summers, 
Sligsby, Moss, Miller, Lindley & Blundell, 1983; Chir- 
gadze, Sergeev, Fomenkova & Oreshin, 1981; Chir- 
gadze, Sergeev, Fomenkova, Oreshin & Nikonov, 
1981). The perspective view, butt-end projection and 
topological diagram of main-chain folding are pre- 
sented in Fig. 10. 

We see that for the two-sheet antiparallel/3 struc- 
tures the spatial motifs h+d~ - and + - d r h  , topological 
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type g3g, are realized in most cases. This result 
coincides with the result of Efimov (1982). Thus, both 
these motifs initiate right-handed superhelical hair- 
pins. In all cases these motifs are located at the end 
of the two-sheet structure. 

Of all the 14 spatial motifs of the g topology only 
the motifs w +, w- and d[,  fl~- have not been observed. 
The reason for this is not clear; nevertheless, the 
right-handedness of the twisted/3 sheets in the pro- 
teins seems to be significant. 

The spatial motifs of the whole/3 structure of the 
protein molecule have usually been described by two- 
dimensional topological diagrams. The deduced 
spatial motifs can easily be applied to such diagrams. 
In addition, we propose to designate the peptide 
hydrogen bonds between the/3 strands by two dots, 
if they are known. A general symbol formula is com- 
posed of different spatial motifs, and some examples 
are given in Fig. 11. As we can see, the formulae of 
the protein spatial motifs very often include an over- 
lapped motif of the g,g type. This can be explained 
in the following way. The simple g-type spatial motifs, 
for example h ÷ or d~-, can be considered as coopera- 
tive systems. In such a case, a complex motif of the 
g,g type with a high order of overlapping, for example 
h~-d~- or (dr)~h-, will be much more cooperative. This 
is one of the reasons why these motifs occur more 
frequently than others. As far as the motif of the gog 
type is concerned, the formula of the observed spatial 
motif can also be represented as the equivalent 

z 

? 

x 

d~" h3 + d;" 

r ' d r  
I 

8 5 67 41 23 
I I I I 

... l I'----1 6 i~?', !3 , 
' I 

I I 

. Jll , 
x,, 

L rj 3J  : . . . . . . .  J 

Y 

Fig. 10. Perspective view, butt-end projection and topological 
diagram of the N- and C-terminal domains of the calf eye lens 
protein 7-crystallin Illb (Chirgadze et al., 1981). 

6 5 8 3 

7 4 1 2 

expression 

(d ~-)od ~- - + - =drh3dr.  

Therefore, this motif also satisfies the same expla- 
nation. 

7. Discussion 

The proposed approach allows one to deduce any 
possible spatial motif of the idealized antiparallel/3 
structure. It consists of the combination of all the 
basic spatial motifs. The only limitation is condi- 
tioned by a few very reasonable structural and topo- 
logical requirements. We can see that at least part of 
the deduced spatial motifs is realized in known pro- 
tein structures. Therefore, a general regularity can be 
deduced for polypeptide-chain folds in globular pro- 
teins. That is why the skeletons of many different 
proteins are built of the same spatial motifs. 

The spatial motifs obtained could give a sound 
basis for engineering newly synthesized or artificial 
protein molecules. One can also easily deduce any 

: , : .o ,, 

21 3 6  5 4 7 8  

P los tocyon in  

/3p h~ dr m 

+ h- m 

1 2 5 4 3 6 7  

Immunoglobul in G New, 

Fob- fragment, C-domain 

m (dr+)3 h-m 

! 

3 2 1 4 7 6 5 8  

G a m m a -  c rys ta l l i n ,  

N - a n d  C- te rm ina l  domains 

- -  "1" - dr h3dr 

d~ h + 

Y J - ~ - k '  "rT 

2 7 4 5 6 3 8 1  

CAP-p ro te in ,  N-doma in ;  

Virus coat proteins 

/3)3 h~ dr J3 

Fig. 11. Topological diagrams and general symbol formulae of the 
spatial structure for some/3 proteins. The basic motifs are listed 
in the formula beginning at the N-terminal end of the polypeptide 
chain. The subscript designates the order of overlapping of the 
/3 strands. The 13 motif always has zero order of overlapping. 
The order of overlapping is not designated if it is equal to unity. 
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topological type and then obtain all possible spatial 
motifs. They can have very different features. For  
example, they can be complete or incomplete depend- 
ing on the number  of /3  strands in each of  the two 
sheets. The complete motifs are suitable for 
monomeric proteins and the incomplete ones for the 
subunit associates. The complete pseudosymmetrical 
motifs, for example the motifs of the even structural 
classes (36 and G8, are highly suitable for monomeric 
proteins or domains. In fact, such motifs occur in the 
domains of  serine proteases, concanavalin and Y- 
crystallins. Incomplete motifs fit very well some pro- 
tein dimers which have an expanded cooperative 
two-sheet/3 structure. Prealbumin dimers are a very 
good example of  such a structure (Blake, Geison, 
Swan, Rerat & Rerat, 1974). 

The variety of the geometrical features of spatial 
motifs can be used for creating some specific func- 
tions. For example, the spatial motifs with linkers on 
both sides of  the sheets seem to be very stable. T h e  
motifs with only one-side linkers seem to have a 
potential mobil i ty  which can be revealed by the open- 
ing of the two sheets. 

The spatial motifs can be polar or non-polar 
depending on whether the chain ends are placed at 
long or short distances. The spatial motifs - ÷ tr tr and 

-- + 
d ~ d ~, structural class G6, are examples of  such motifs 
(see Fig. 6). The polar motifs can be easily joined 
together into homo- or heterooligomeric associates 
with the united two-sheet/3 structure. These motifs 
can belong to different domains of a single polypep- 
tide chain. Coding of  such a protein system in one 
complex gene seems to proceed without difficulties. 
However, such giant protein structures have not yet 
been observed. On the contrary, non-polar motifs can 
be realized as separate domains without the united 
two-sheet/3 structure. 

It is an interesting fact that the whole family of  
spatial motifs is divided into two enantiomorphous 
subgroups. At present, a choice of mirror type cannot 
be made in advance. However, one can imagine the 
possibility of  creating artificial polypeptides from the 
o-amino acid. Then the spatial motifs of  the corre- 
sponding mirror type would seem to be realized. 

Finally, it may be hoped that the structures of  some 
oligomeric protein associates will contribute to the 
understanding of  the new principle of ultrastructural 
organization, at least for proteins with the antiparallel 
/3 structure. 
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